On an Extremal Data Processing Inequality for long Markov Chains

نویسندگان

  • Thomas A. Courtade
  • Jiantao Jiao
  • Tsachy Weissman
چکیده

We pose the following extremal conjecture: Let X,Y be jointly Gaussian random variables with linear correlation ρ. For any random variables U, V for which U,X, Y, V form a Markov chain, in that order, we conjecture that: 2−2[I(X;V )+I(Y ;U)] ≥ (1− ρ2)2−2I(U ;V ) + ρ22−2[I(X;U)+I(Y ;V . By letting V be constant, we see that this inequality generalizes a well-known extremal result proved by Oohama in his work on the quadratic Gaussian one-helper problem. If valid, the conjecture would have some interesting consequences. For example, the converse for the quadratic Gaussian two-encoder source coding problem would follow from the converse for multiterminal source coding under logarithmic loss, thus unifying the two results under a common framework. Although the conjecture remains open, we discuss both analytical and numerical evidence supporting its validity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Bayes Estimation in Nonstationary Markov chains

Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical  Bayes estimators  for the transition probability  matrix of a finite nonstationary  Markov chain. The data are assumed to be of  a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...

متن کامل

Concentration Inequalities for Dependent Random Variables via the Martingale Method

Abstract: We use the martingale method to establish concentration inequalities for a class of dependent random sequences on a countable state space, with the constants in the inequalities expressed in terms of certain mixing coefficients. Along the way, we obtain bounds on certain martingale differences associated with the random sequences, which may be of independent interest. As an applicatio...

متن کامل

Extremal Indices, Geometric Ergodicity of Markov Chains, and Mcmc

We investigate the connections between extremal indices on the one hand and stability of Markov chains on the other hand. Both theories relate to the tail behaviour of stochastic processes, and we find a close link between the extremal index and geometric ergodicity. Our results are illustrated throughout with examples from simple MCMC chains.

متن کامل

The Rate of Rényi Entropy for Irreducible Markov Chains

In this paper, we obtain the Rényi entropy rate for irreducible-aperiodic Markov chains with countable state space, using the theory of countable nonnegative matrices. We also obtain the bound for the rate of Rényi entropy of an irreducible Markov chain. Finally, we show that the bound for the Rényi entropy rate is the Shannon entropy rate.

متن کامل

The Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains

As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014